

Instituto Marillac I.A.P.

Colegio de Ciencias y Humanidades Incorporada a la UNAM Clave 2033

GUIA DE ESTUDIO PARA EL EXAMEN EXTRAORDINARIO DE CALCULO DIFERENCIAL E INTEGRAL II

Clave: 1601

Elaborada y actualizada por:	
Profesor : LUIS ANTONIO AGUILAR MEDRANO	Nombre de quien contesta la guía:
	No. Cuenta:
Revisión Técnica:	
Aida E. Delgado Santana	Fecha:
Edición: Mayo 2018	
	Valor en el examen:No aplica.

PRESENTACIÓN

La presente **guía tiene como finalidad** orientar al alumnado en el estudio de la materia Calculo Diferencial e Integra II para presentar con éxito el examen extraordinario de dicha materia curricular, conforme al Programa de Estudios correspondiente.

La eficacia de esta guía depende de la disposición, esfuerzo y dedicación para contestarla de una manera clara, ordenada y completa. Ten presente que presentarse a un examen sin la preparación suficiente involucra en el mayor de los casos un fracaso probable, una pérdida de tiempo y un acto irresponsable que puedes evitar al estudiar con tiempo, forma y dedicación.

En la guía encontrarás 3 apartados que se enlistan de la siguiente manera:

- 1. <u>Sobre la Asignatura.</u>Datos generales: Propósitos, enfoques, unidades y objetivos;
- **2.** <u>Sobre la Guía.</u>Instrucciones, materiales requeridos, bibliografía y páginas web que puedes consultar para contestarla.
- 3. Actividades de aprendizaje. Reactivos o ejercicios a realizar.

Cada una de las actividades de aprendizaje que se plantean en esta guía no solo tienen la finalidad de prepararte para resolver un ejercicio o un examen, sino también **para reforzar aprendizajes**que te ayuden a desarrollar técnicas y formas de pensamiento lógico razonables con el fin de visualizar que los aprendizajes como los conocimientos no son hechos aislados sin aplicación a los fenómenos de la vida cotidiana, además de desarrollar con base a las construcciones científicas un pensamiento más crítico de las situaciones que nos rodean en nuestro día a día.

ÍNDICE

1. SO	BRE LA ASIGNATURA DE CALCULO DIFERENCIAL E INTEGRA	∖L II	(4)
1.1.	Propósitos Generales		(4)
1.2.	Contenidos de la Asignatura		(6)
2. SO	BRE LA GUIA		(7)
2.1.	Instrucciones Generales		(7)
2.2.	Herramientas de apoyo para contestar la guía y el exan	nen	(8)
2.3.	Bibliografía		(8)
2.3.	1. Libros		(8)
2.3.2	2. Electrónica		(8)
3. AC	CTIVIDADES DE APRENDIZAJE		(9)
3.1.	UNIDAD I: Derivadas de Funciones Trascendentes		(9)
3.1.1	I. Derivadas de funciones trigonométricas		(9)
3.1.2	2. Derivadas de funciones exponenciales y logarítmicas		(14)
3.2.	UNIDAD II: La Integral como antiderivada	(17)	
3.3.	UNIDAD III: La Integral definida	(24)	
3.4.	UNIDAD IV: Modelos y Predicción	(27)	
APEND	DICES		
I.	FORMULAS BASICAS DE DERIVACION	(29)	
II.	FORMULAS BASICAS DE INTEGRACIÓN	(30)	

SOBRE LA ASIGNATURA CALCULO DIFERENCIAL E INTEGRAL II

1.1 PROPÓSITOS GENERALES

Incrementar la capacidad de resolver problemas al adquirir nuevas técnicas y herramientas que proporciona el cálculo; en particular, la representación y predicción de situaciones y fenómenos que involucran variación.

Avanzar en la comprensión y manejo de la derivada, al estudiarla en funciones exponenciales, logarítmicas y trigonométricas.

Comprender la relación entre la derivada y la integral que se sintetiza en el Teorema Fundamental del Cálculo.

Utilizar adecuadamente las fórmulas de integración, así como los métodos de sustitución e integración por partes.

Relacionar a la integral definida de una función con el área bajo una curva y comprende que puede obtenerse mediante la antiderivada o con un proceso infinito de aproximaciones numéricas.

Integrar las diversas interpretaciones de la integral y las utilizarlas para resolver problemas relacionados con la rapidez de cambio y con el cálculo del área bajo una curva.

ENFOQUES DE LA ASIGNATURA

Disciplinario: Es una ciencia y una herramienta. Como ciencia tiene un desarrollo que admite titubeos, conjeturas y aproximaciones, al igual que rigor, exactitud y formalidad; ya que es el producto de una actividad humana que evoluciona, construye, organiza y sistematiza conocimientos, a partir de la necesidad de resolver problemas teóricos o prácticos.

Didáctico:Introducir el estudio de contenidos mediante el planteamiento de situaciones o problemas que no contemplen de inicio fuertes dificultades operatorias, de modo que la atención pueda centrarse en el concepto, el procedimiento o las características y propiedades que se van a estudiar.

Propiciar el tránsito entre distintas formas de representación matemática, enfatizando los procesos algorítmicos de la representación algebraica a través de la manipulación de los registros tabular y gráfico para que la algoritmia tenga mayor significado.

1.2 CONTENIDO DE LA ASIGNATURA:

Unidad I. DERIVADAS DE FUNCIONES TRASCENDENTES

Reforzar y extender el conocimiento de la derivada a través del estudio de la variación de las funciones trigonométricas, logarítmicas y exponenciales para cubrir situaciones que se modelan con funciones trascendentes. Retomar las relaciones entre las gráficas de una función y su derivada.

Unidad II. LA INTEGRAL COMO ANTIDERIVADA

Introducir el concepto de integral indefinida, a partir de analizar situaciones de variación en las que sólo se conoce su razón de cambio e inducir las primeras fórmulas para aplicarlas junto con los dos métodos de integración.

Unidad III. LA INTEGRAL DEFINIDA

Introducir el concepto de integral definida como una función – área para construir su significado. Relacionar los conceptos de derivada e integral en la formulación del teorema Fundamental del Cálculo.

Unidad IV. MODELOS Y PREDICCION

Culminar el estudio de la derivada y la integral con la construcción de un modelo que las involucra relacionado con situaciones de diversos contextos. Utilizar el modelo para hacer predicciones sobre el comportamiento general y puntual de las situaciones estudiadas.

2. SOBRE LA GUÍA.

2.1 INSTRUCCIONES GENERALES:

- Lee con atención las instrucciones y realiza las actividades propuestas, recuerda que esta guía solo es un apoyo de tu autoestudio.
- Esta guía no se contesta de un día para otro, dedica al estudio y a contestar esta guía por lo menos 3 horas diarias continuas, durante al menos 15 días antes del examen; si le dedicas el tiempo necesario, seguramente aprobarás el examen extraordinario.
- Subraya las palabras claves o que no comprendascon color y búscalas en el diccionario.
- En caso de dudas, **consulta la bibliografía**sugerida en la guía. Cuando termines de resolverla, revisa tus respuestas y si continúan las dudas solicita apoyo a algún docente.
- Para un mejor proceso de aprendizaje y facilitar tu estudio para acreditar tu examen extraordinario, te sugerimos: Asistir a las asesorías (con la guía contestada) que se programen donde podrás recibir orientación y aclaración de las dudas que te hayan surgido durante la resolución de la guía.
- Investiga más información de los temas y actividades, puedes elaborar por propia iniciativa un resumen, mapa conceptual, una red conceptual, más ejercicios o alguna otra actividad que enriquezca tu aprendizaje.
- Resolver correctamente las autoevaluaciones te permitirá constatar tus avances académicos, pero no garantiza que automáticamente apruebes tu examen, ya que los contenidos específicos y la forma de los reactivos varían en el examen.
- Ser sistemático en todos los procedimientos que impliquen presentar la solución a un reactivo te ayudará a comprender y entender mejor las ideas, conceptos, aprendizajes, etc. de cada apartado.

2.2 HERRAMIENTAS DE APOYO PARA CONTESTAR LA GUÍA Y EL EXAMEN:

Durante la solución de la guía y la presentación de examen podrás utilizar calculadora científica, colores, plumas y formulario; el formulario podrá ser elaborado por ti o en otro caso uno que el profesor haya elaborado.

2.3 BIBLIOGRAFIA

2.3.1 LIBROS

Ayres Frank. Cálculo Diferencial e Integral: Teoría y 1175 problemas resueltos. Mc Graw Hill, México, 1977.

Benítez, Rene. Cálculo Diferencial para Ciencias Básicas e Ingeniería. Trillas, México, 2008.

Goldstein, L. J. et. al. Cálculo y sus aplicaciones. Prince - Hall Hispanoamericana, México, 1987.

Spiegel, M. Manual de fórmulas y tablas matemáticas. McGraw Hill.

Larson, Ron et. al. Cálculo.. Mc Graw Hill, Novena Edición, 2011.

Stewart, James, Cálculo de una variable, trascendentes tempranas, Thomson – Learning, Cuarta Edición, 2001.

Stein, Sherman y BARCELLOS, A. Cálculo y Geometría Analítica 1, McGraw – Hill, Colombia, 1995.

Warner, Stefan y COSTENOBLE, Steven. Cálculo Aplicado. Segunda Edición, Thomson, México, 2002.

2.3.2 ELECTRONICA

1. https://portalacademico.cch.unam.mx

3. ACTIVIDADES DE APRENDIZAJE

3.1 UNIDAD I: LA DERIVADA DE FUNCIONES TRASCENDENTES

3.1.1 Derivadas de Funciones Trigonométricas

I. Determina la derivada de cada una de las funciones dadas, elige la opción correcta justificando en todo momento el procedimiento aplicado para llegar a la solución:

1.
$$\frac{d}{dx}(\sin(2x))$$

a)
$$f'(x) = 2\cos(2x)$$

b)
$$f'(x) = -2\cos(2x)$$

c)
$$f'(x) = \cos(2x)$$

$$2. \quad \frac{d}{dx} \left(\cos(6x+5)\right)$$

a)
$$f'(x) = 6\sin(6x+5)$$

b)
$$f'(x) = -6\sin(6x+5)$$

c)
$$f'(x) = 6\sin(6x+5)$$

3.
$$\frac{d}{dx} \left(\tan \left(5x^2 \right) \right)$$

a)
$$f'(x) = 10 \sec^2(5x^2)$$

b)
$$f'(x) = 10x \sec(5x^2)$$

c)
$$f'(x) = 10x \sec^2(5x^2)$$

4.
$$\frac{d}{dx} \left(\cot \left(x^3 \right) \right)$$

a)
$$f'(x) = 3x^2 \csc^2(x^3)$$

b)
$$f'(x) = -3x^2 \csc^2(x^3)$$

c)
$$f'(x) = -3x^2 \csc(x^3)$$

5.
$$\frac{d}{dx} \left(\sec \left(x + 8x^2 \right) \right)$$

a)
$$f'(x) = (1+16x)\sec(x+8x^2)\tan(x+8x^2)$$

b)
$$f'(x) = -(1+16x)\sec(x+8x^2)\tan(x+8x^2)$$

c)
$$f'(x) = (1+16x)\sec(x+8x^2)\sin(x+8x^2)$$

6.
$$\frac{d}{dx}\left(\csc\left(3x^3-2x^2\right)\right)$$

a)
$$f'(x) = (9x^2 - 4x)\csc(3x^3 - 2x^2)\cot(3x^3 - 2x^2)$$

b)
$$f'(x) = -(9x^2 - 4x)\csc(3x^3 - 2x^2)\cot(3x^3 - 2x^2)$$

c)
$$f'(x) = -(-4x)\csc(3x^3 - 2x^2)\cot(3x^3 - 2x^2)$$

7.
$$\frac{d}{dx}(\tan(8x+3))$$

a)
$$f'(x) = \sec(8x+3)$$

b)
$$f'(x) = -8\sec^2(8x+3)$$

c)
$$f'(x) = 8\sec^2(8x+3)$$

8.
$$\frac{d}{dx} \left(\cot \left(x^2 + 4x \right) \right)$$

a)
$$f'(x) = -(2x+4)\csc^2(x^2+4x)$$

b)
$$f'(x) = -2x\csc^2(x^2 + 4x)$$

c)
$$f'(x) = -(2x+4)\csc(x^2+4x)$$

$$9. \quad \frac{d}{dx} \left(\sin(16x + 8) \right)$$

a)
$$f'(x) = 16\cos(16x - 8)$$

b)
$$f'(x) = \cos(16x - 8)$$

c)
$$f'(x) = 16\cos(16x+8)$$

10.
$$\frac{d}{dx} \left(\cos\left(9x^3\right)\right)$$

a)
$$f'(x) = -\sin(9x^3)$$

b)
$$f'(x) = 27x^2 \sin(9x^3)$$

c)
$$f'(x) = -27x^2 \sin(9x^3)$$

11.
$$\frac{d}{dx}\left(\sec\left(7x^4+2\right)\right)$$

a)
$$f'(x) = 28x^3 \sec(7x^4 + 2)\tan(7x^4 + 2)$$

b)
$$f'(x) = 28x^2 \sec(7x^4 + 2)\tan(7x^4 + 2)$$

c)
$$f'(x) = 28x \sec(7x^4 + 2)\tan(7x^4 + 2)$$

12.
$$\frac{d}{dx}\left(\csc\left(5x^5\right)\right)$$

a)
$$f'(x) = -25x^4 \csc(5x^5)\cot(5x^5)$$

b)
$$f'(x) = -25x^3 \csc(5x^5)\cot(5x^5)$$

c)
$$f'(x) = -25x^2 \csc(5x^5)\cot(5x^5)$$

13.
$$\frac{d}{dx}(\sec(3x))$$

a)
$$f'(x) = 3\sec(x)\tan(x)$$

b)
$$f'(x) = 3\sec(3x)\tan(3x)$$

c)
$$f'(x) = 3\sec(x)\tan(3x)$$

$$14. \ \frac{d}{dx} \left(\tan \left(6x + 3 \right) \right)$$

a)
$$f'(x) = 6\sec(6x+3)$$

b)
$$f'(x) = (6x+3)\sec(6x+3)$$

c)
$$f'(x) = 6\sec^2(6x+3)$$

15.
$$\frac{d}{dx} \left(\cos\left(9x^2\right) \right)$$

a)
$$f'(x) = 18x \sin(9x^2)$$

b)
$$f'(x) = -18x \sin(9x^2)$$

c)
$$f'(x) = -18x \sin(9x)$$

16.
$$\frac{d}{dx} \left(\cot \left(3x^2 \right) \right)$$

a)
$$f'(x) = -\csc^2(3x^2)$$

b)
$$f'(x) = -6x \csc^2(3x^2)$$

c)
$$f'(x) = -6x \csc^2(3x)$$

17.
$$\frac{d}{dx}(\sin(4x+6x))$$

a)
$$f'(x) = -10\cos(10x)$$

b)
$$f'(x) = 10\cos(10x)$$

c)
$$f'(x) = 10\cos(x)$$

3.1.2. Derivadas de Funciones Exponenciales y Logarítmicas

$$18. \ \frac{d}{dx} (e^x)$$

a)
$$f'(x) = e^x$$

b)
$$f'(x) = xe^x$$

c)
$$f'(x) = e^{3x}$$

$$19. \ \frac{d}{dx} (\ln|x|)$$

a)
$$f'(x) = \frac{x}{1}$$

b)
$$f'(x) = \frac{1}{x}$$

c)
$$f'(x) = \frac{\ln|x|}{x}$$

$$20. \ \frac{d}{dx} \left(e^{\left(2x^2+3\right)} \right)$$

a)
$$f'(x) = (2x^2 + 3x)e^{(2x^2 + 3x)}$$

b)
$$f'(x) = (2x^2 + 3)e^{(2x^2 + 3x)}$$

c)
$$f'(x) = 4x e^{(2x^2+3x)}$$

21.
$$\frac{d}{dx}(\ln|4x|)$$

a)
$$f'(x) = \frac{4}{4x}$$

b)
$$f'(x) = \frac{1}{x}$$

c)
$$f'(x) = \frac{4x}{4}$$

$$22. \ \frac{d}{dx} \left(e^{\left(3x^3 + x^5\right)} \right)$$

$$a) f'(x) = e^{\left(3x^3 + x^5\right)}$$

b)
$$f(x) = (3x^3 + x^5)e^{(3x^3 + x^5)}$$

c)
$$f'(x) = (9x^2 + 5x^4)e^{(3x^3 + x^5)}$$

23.
$$\frac{d}{dx} \left(\ln \left| 7x + x^3 \right| \right)$$

$$a) f'(x) = \frac{\left(7x + x^3\right)}{\left(7 + 3x^2\right)}$$

b)
$$f'(x) = \frac{(7+3x^2)}{(7x+x^3)}$$

c)
$$f'(x) = -\frac{(7+3x^2)}{(7x+x^3)}$$

$$24. \ \frac{d}{dx} \left(e^{\left(\ln(x)\right)} \right)$$

$$a) f'(x) = \frac{e^{(\ln|x|)}}{x}$$

b)
$$f'(x) = \frac{x}{e^{(\ln|x|)}}$$

$$C) f'(x) = \frac{e^{(\ln|x|)}}{\ln|x|}$$

3.2 UNIDAD II: LA INTEGRAL COMO ANTIDERIVADA

II. Selecciona la respuesta correcta que determina quién es la Antiderivada de las funciones dadas.

1.
$$f(x) = 3x + 5$$

a)
$$\frac{3}{2}x + 5x$$

b)
$$\frac{3}{2}x^2 + 5x$$

c)
$$\frac{3}{2}x^2 - 5x$$

2.
$$f(x) = x^4 + x^5 - x^6$$

a)
$$\frac{1}{5}x^4 + \frac{1}{6}x^5 - \frac{1}{7}x^6$$

b)
$$\frac{1}{5}x^5 + \frac{1}{6}x^6 - \frac{1}{7}x^6$$

c)
$$\frac{1}{5}x^5 + \frac{1}{6}x^6 - \frac{1}{7}x^7$$

3.
$$f(x) = 12x^5 + 8x + 24x^3 - 27x^8$$

a)
$$\frac{12}{6}x^6 + \frac{8}{2}x^2 - \frac{24}{4}x^4 - \frac{27}{9}x^9$$

b)
$$-\frac{12}{6}x^6 - \frac{8}{2}x^2 + \frac{24}{4}x^4 - \frac{27}{9}x^9$$

c)
$$2x^6 + 4x^2 - 6x^4 - 3x^9$$

4.
$$f(x) = x^{1/2} + x^{-1/2}$$

a)
$$\frac{2}{3}x^{\frac{3}{2}} + 2x^{\frac{1}{2}}$$

b)
$$\frac{3}{2}x^{\frac{3}{2}} - 2x^{\frac{1}{2}}$$

c)
$$\frac{1}{2}x^{\frac{3}{2}} + x^{\frac{1}{2}}$$

$$5. \quad f(x) = \sqrt{x^2}$$

a)
$$\frac{2}{5}x^{\frac{5}{2}}$$

b)
$$\frac{5}{2}x^{\frac{5}{2}}$$

c)
$$x^{\frac{5}{2}}$$

6.
$$f(x) = x - 7$$

a)
$$x^2 - 7x$$

b)
$$\frac{1}{2}x - 7x$$

c)
$$\frac{1}{2}x^2 - 7x$$

$$7. \quad f(x) = \frac{2}{\sqrt{x}}$$

a)
$$\frac{4}{\sqrt{x}}$$

b)
$$\frac{4}{2\sqrt{x}}$$

c)
$$\frac{2}{4\sqrt{x}}$$

8.
$$f(x) = x^{7/2} - x^{3/2} + x$$

a)
$$\frac{9}{2}x^{9/2} - \frac{5}{2}x^{5/2} + \frac{1}{2}x^2$$

b)
$$x^{9/2} - x^{5/2} + x^2$$

c)
$$\frac{2}{9}x^{\frac{9}{2}} - \frac{2}{5}x^{\frac{5}{2}} + \frac{1}{2}x^2$$

9.
$$f(x) = 4x^4 - 9x^8 + 12x^{11}$$

a)
$$\frac{4}{5}x^5 - \frac{1}{9}x^9 + \frac{1}{12}x^{12}$$

b)
$$\frac{4}{5}x^5 - x^9 + x^{12}$$

c)
$$\frac{5}{4}x^5 - x^9 + x^{12}$$

10.
$$f(x) = 8x^3 - 9x^2 + 44$$

a)
$$2x^4 - 3x^3 + 44x$$

b)
$$x^4 - x^3 + x$$

c)
$$-2x^4 + 3x^3 - 44x$$

11.
$$f(x) = 8x^{11} + 10x$$

a)
$$\frac{3}{2}x^{12} + 5x^2$$

b)
$$\frac{2}{3}x^{12} + 5x^2$$

c)
$$\frac{2}{3}x^{12} - 5x^2$$

III. Realiza las operaciones convenientes, aplica los métodos de integración adecuados para determinar la solución correcta a las siguientes integrales indefinidas. Para cada integral escribe el método de integración que utilizaste en el espacio correspondiente.

$$1. \int \left(\sqrt{x^5} + 3x\right) dx$$

2.
$$\int (4x^3 - 6x^5 + 8)dx$$

3.
$$\int \left(\frac{7}{3}x^2 + \frac{9}{8}x^7\right) dx$$

4.
$$\int (7x^3 + x)21x^2 + 1 dx$$

5. $\int (2x^3 - x^2)^4 (6x^2 - 2x) dx$

6. $\int (x^5 + 3)^9 x^4 dx$

 $7. \quad \int x^3 \cos(x) dx$

8. $\int x^2 e^x dx$

9. $\int \ln|x| dx$

10. $\int \left(x^{\frac{3}{2}} - \sqrt{x} - 18x^5\right) dx$

11. $\int \cos(5x^2)dx$

 $12. \int x^4 \sin(x) dx$

 $13. \int x^5 e^x dx$

14. $\int \tan(2x)dx$

15. $\int (2x^9 - 10x^8) dx$

3.3 UNIDAD III: LA INTEGRAL DEFINIDA

IV. Determina el valor de las siguientes integrales definidas. Elige la opción a respuesta correcta. Justifica la respuesta elaborando cada parte del procedimiento analítico.

1.
$$\int_{2}^{3} (3x^2 + x^5 - 2x) dx$$

- a) 5
- b) 3
- c) 12

$$2. \int_{0}^{3} \left(x^3 - 2x\right) dx$$

- a) 0
- b) 1
- c) 3

$$3. \int_{4}^{5} \left(3x^2 + 4x^3\right) dx$$

- a) 560
- b) 360
- c) 430

- $4. \int_{-2}^{-1} (x^2 + 1) 2x \, dx$
 - a) $\frac{21}{2}$
 - b) $-\frac{21}{2}$
 - c) $\frac{2}{21}$
- $5. \int_{0}^{1} xe^{x} dx$
 - a) 1
 - b) -1
 - c) 0
- V. Dadas las siguientes funciones determina el área que se forma entre ellas.
 - $\begin{array}{ll}
 y = x^2 1 \\
 y = x
 \end{array}$

$$y = 2x$$

$$y = x^2 - 4x$$

$$y = x$$

$$y = x^2 - 3x$$

4.4 UNIDAD IV: MODELOS Y PREDICCION

- VI. Dados los siguientes problemas determina lo que se te pide.
 - 1. La aceleración de un móvil está dada por la función a(t)=t+6 determina: la distancia (posición) que recorre el móvil en los primeros 5 segundos si tiene una condición inicial v(0)=3((0,3)).

2. La velocidad de un proyectil está dada por la función $v(t)=t^2+3t$ determina: la función distancia (posición) que recorre el proyectil en los primeros 9 segundos si tiene una condición inicial v(0)=1 ((0,1)).

- 3. La aceleración de propagación de un virus llamado Epstein Barr se modela mediante la función $a(t)=3t^2+2t-1$, donde la variable t representa el tiempo en segundos.
 - Cuál será la función posición, la función velocidad del virus después de haber transcurrido 7 segundos si tiene una condición de v(1) = 2((1,2))

APENDICE I

FORMULAS BASICAS DE DERIVACION

LEYES DE LOS EXPONENETES

$$\left(x^{m}\right)^{n} = x^{mn} \sqrt[n]{x^{m}} = x^{\frac{m}{n}}$$

$$\frac{x^{m}}{x^{n}} = x^{m-n} x^{m} \left(x^{n}\right) = x^{m+n}$$

$$\frac{1}{x^{n}} = x^{-n} \sqrt[n]{\frac{a}{b}} = \frac{\sqrt[n]{a}}{\sqrt[n]{b}}$$

DERIVACIÓN

Derivadas de Funciones Algebraicas

$$\frac{d}{dx}(C) = 0$$

$$\frac{d}{dx}(Cx) = C$$

$$\frac{d}{dx}\left(Cx^{n}\right) = C\left(nx^{n-1}\right)$$

Regla de la cadena

$$\frac{d}{dx}(u)^n = nu^{n-1}\frac{du}{dx}$$

Regla del cociente de funciones

$$\frac{d}{dx} \left(\frac{w}{v} \right) = \frac{v \frac{dw}{dx} - w \frac{dv}{dx}}{v^2}$$

Regla del producto de funciones

$$\frac{d}{dx}(uv) = u\frac{dv}{dx} + v\frac{du}{dx}$$

Derivadas de Funciones trascendentes

Trascendentes Logarítmicas

$$\frac{d}{dx}\ln|u| = \frac{1}{u}\frac{du}{dx}$$
$$\frac{d}{dx}\log_a|u| = \log_a e \frac{1}{u}\frac{du}{dx}$$

Trascendentes Trigonométricas

$$\frac{d}{dx}\sin(u) = \cos(u)\frac{du}{dx}$$

$$\frac{d}{dx}\cos(u) = -\sin(u)\frac{du}{dx}$$

$$\frac{d}{dx}\tan(u) = \sec^2(u)\frac{du}{dx}$$

$$\frac{d}{dx}\cot(u) = -\csc^2(u)\frac{du}{dx}$$

$$\frac{d}{dx}\sec(u) = \sec(u)\tan(u)\frac{du}{dx}$$

$$\frac{d}{dx}\csc(u) = -\csc(u)\cot(u)\frac{du}{dx}$$

Trascendentes exponenciales

$$\frac{d}{dx}e^{u} = e^{u}\frac{du}{dx}$$
$$\frac{d}{dx}a^{u} = (\ln a)a^{u}\frac{du}{dx}$$

APENDICE II

REGLAS BASICAS DE INTEGRACION

Integración por partes

$$\int udv = uv - \int vdu + C$$

Teorema Fundamental del Cálculo (Integral Definida)

$$\int_{a}^{b} f(x) dx = E(b) - E(a)$$

Área entre Curvas

$$A = \int_{a}^{b} (f(x) - g(x)) dx \quad [=] u^{2}$$

INTEGRACIÓN INDEFINIDA

$$\int 0 dx = C$$

$$\int A dx = Ax + C$$

$$\int Ax^{n} dx = \frac{A}{n+1}x^{n+1} + C$$

Integrales de Funciones Trascendentes

Funciones Exponencial y Logarítmica

$$\int \frac{dx}{x} = \ln|x| + C$$

$$\int e^x dx = e^x + C$$

$$\int e^{ax} dx = \frac{e^{ax}}{a} + C$$

Funciones Trigonométricas

$$\int Sin(ax)dx = -\frac{1}{a}Cos(ax) + C$$

$$\int Cos(ax)dx = \frac{1}{a}Sin(ax) + C$$

$$\int tan(ax)dx = \frac{1}{a}\ln|Sec(ax)| + C$$

$$\int Cot(ax)dx = \frac{1}{a}\ln|Sin(ax)| + C$$

$$\int Sec(ax)dx = \frac{1}{a}\ln|Sec(ax) + tan(ax)| + C$$

$$\int Csc(ax)dx = \frac{1}{a}\ln|Csc(ax) - Cot(ax)| + C$$